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Abstract. We demonstrate how the screening procedure works in a one-dimensional application
of the KKR method by constructing an explicit analytic expression for the full scattering path
matrix for the reference system. As an example of where screening renders novel calculations
possible, we discuss the Friedel oscillations in a one-dimensional chain of potential wells with
broken crystal symmetry.

1. Introduction

Computational methods for solving Schrödinger-like equations are central to the study of
the electronic structures of condensed matter. Normally, these evolve smoothly as more
efficient algorithms are implemented or more realistic features of the crystal potential are
included. However, sometimes, a new idea changes not only the way we do things but
also the way we think about certain problems and render new classes of problems tractable.
Screening in the LMTO and KKR methods is one such idea. It was pioneered by Andersen
and collaborators largely in the context of LMTO calculations [1, 2], and was adopted, in its
present form, for the KKR method by Szunyoghet al [7] and Zelleret al [9]. In the present
paper we wish to illustrate the idea in the context of a very simple, one-dimensional model
to display its principal features more directly than is possible in a full three-dimensional
calculation.

The multiple scattering approach to solving the Schrödinger equation for an array of
spherical non-overlapping potentials (KKR formalism) has been formulated for one spatial
dimension in a very elegant paper by Butler [3]. Formally, this one-dimensional model is
nearly identical to its three-dimensional counterpart but is computationally much simpler.
Therefore it is very well suited to investigate features of the KKR method.

In the above context, screening refers to the fact that the structure constants in a multiple
scattering theory can be made short ranged in real space by using a suitably chosen reference
system other than the vacuum [1, 7, 9].

For clarity and later convenience we recall the one-dimensional KKR method in section
2. In a slight generalization of Butler’s results [3] the analytic expression for the scattering
path matrix is given and its site dependence discussed. The understanding of this site
dependence is crucial in order to understand the screening effect that occurs by using
a suitable reference system. In section 3 we describe a reference system explicitly and
demonstrate screening. To illustrate the power of multiple scattering theory with screened
structure constants to solve problems without translational symmetry, we have chosen to
investigate the charge oscillations around an interface between two semi-infinite solids. We
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find the expected connection between the wavelength of the oscillation and the extremal
bulk k-vector of the Fermi surface.

Furthermore we show results for the dependence of the charge oscillation amplitude on
the smoothness of the boundary. Surprisingly it turns out that smearing out the boundary
can lead to an enhancement of the oscillation amplitudes.

2. The KKR for a one-dimensional model

For the sake of introducing notation and references we will give here a short introduction
to the one-dimensional KKR method [3, 4].

The general problem we face is solving the one-dimensional Schrödinger equation{
−
(

d

dx

)2

+ V (x)
}
ψ(x) = Eψ(x) (1)

where we assume that the potentialV can be written as a sum of localized contributionsVi
in such a way that the Schrödinger equation withVi instead ofV (the single site problem)
can be solved readily. Furthermore, we assume that there is no overlap between the different
potentialsVi and that there is a (eventually infinitesimally small) region around every
potentialVi where the total potential is zero. This region is usually referred to as the
interstitial region.

It is a main feature of the KKR and similar multiple scattering based methods that
the whole problem is split into two parts. First the Schrödinger equation for a given
energyE is solved for every individual potentialVi . It is important to note that there exist
solutions for every (even complex) energies because in this first step there are no boundary
conditions imposed. In a second step these solutions have to be matched smoothly. The
matched solution is now subject to some boundary conditions which lead to an eigenvalue
equation—the KKR equation.

2.1. Coordinates and basis functions

When we face the problem of finding the solution of the single site problem for the potential
Vi which is nonzero around a pointRi it is appropriate to introduce a local coordinate system.

So letRi be a point on the real axis. We can then describe every pointx by giving
its distanceri = |x − Ri | and the direction̂xi = (x − Ri)/ri with respect toRi . x̂i is the
one-dimensional analogue to the angles2 and φ in three-dimensional polar coordinates.
With this convention we can write for everyx:

x = ri x̂i + Ri. (2)

Every functionf (x) can be written as a sum of an even and an odd contribution with
respect toRi :

f (x) = f0(ri)Y0(x̂i)+ f1(ri)Y1(x̂i) (3)

with

f0(ri) = 1√
2
(f (Ri + ri)+ f (Ri − ri))

f1(ri) = 1√
2
(f (Ri + ri)− f (Ri − ri)) (4)
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and

Y0(x̂i) = 1√
2

Y1(x̂i) = x̂i√
2
. (5)

This expansion is unique and can be viewed as the analogue to the angular momentum
expansion in three dimensions.

A complete set of solutions to the free Schrödinger equation is given by the following
regular

j0(
√
Er) = cos(

√
Er) j1(

√
Er) = sin(

√
Er) (6)

and irregular

n0(
√
Er) = sin(

√
Er) n1(

√
Er) = − cos(

√
Er) (7)

special solutions. Furthermore it is useful to introduce the functions

h0(
√
Er) = j0(

√
Er)+ in0(

√
Er) = ei

√
Er

h1(
√
Er) = j1(

√
Er)+ in1(

√
Er) = −iei

√
Er . (8)

These linear combinations are characterized by the fact that they decay with larger whenever√
E has a positive imaginary part. Normally, all these functions will appear in connection

with the corresponding one-dimensional spherical harmonicYl . Therefore, we will use the
notation

jl(E, x) = jl(
√
Er)Yl(x̂) (9)

and similar forn andh when appropriate.
When complex energies are encountered the sheet of the square root

√
E is to be taken

such that its imaginary part is positive. That means that the branch cut is along the positive
real axis. For real and positiveE,

√
E is then defined as limε↘0

√
E + iε, which is the

usual positive square root.

2.2. The KKR equation

Now that we have clarified the notation we can return to the Schrödinger equation (1).
For x in the interstitial region around the potential atRi every solution of the Schrödinger
equation can be expressed as a linear combination of thejl and thehl centred atRi :

9(x) =
∑
l

ail jl(E, xi)+
∑
l

bil hl(E, xi). (10)

For x inside the range of the potentialVi , 9(x) is meant to be the solution of the single site
Schr̈odinger equation with potentialVi which fits smoothly to9 given by (10). Requiring
9 to be continuously differentiable atx = Ri results in two linear equations connecting the
coefficientsal andbl have to fulfil:

bil =
1

i
√
E

∑
l′
t ill′a

i
l′ . (11)

t i is called the scattering matrix of the potential centred at sitei and is determined by
this potential alone. When the potential is symmetric the scattering matrix is diagonal, i.e.
a complete set of solutions with pure symmetry can be constructed. Once the scattering
matrix for every site is known the coefficientsa can be expressed by theb.
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So far we have gained a set of solutions which forx in the interstitial region aroundRi
have the form:

9(x) =
∑
ll′

i
√
Et−1

ll′ b
i
l′jl(E, xi)+

∑
l

bil hl(E, xi). (12)

By construction these solutions are regular at the cell centresx = Ri but for arbitraryb
they will be discontinuous at the cell boundaries.

On the other hand, parametrizing9 by

9(x) =
∑
i

∑
l

cil hl(E, xi) (13)

for x in the whole interstitial region guarantees proper matching at the cell boundaries and
also the right behaviour at infinity (i.e. exponential decay whenever

√
E has a positive

imaginary part). The KKR equation now follows from requiring that (12) and (13) describe
the same function which will then have all the correct matching and regularity properties.
While for x in the interstitial region around sitei 9 is expressed in (12) by functions centred
at the sitei, 9 in (13) is written as a superposition of functionshl centred at different sites.
However, ashl(rj ) for j 6= i is a regular function forx aroundRi it can be expanded in
terms ofj centred atRi :

hl(E, xj ) = i
√
E
∑
l′
jl′(E, xi)g

ij

l′l(E). (14)

The coefficientsgijl′l(E) are called structure constants. Explicit expressions for them are
given below. In the interstitial region around theith scatterer,9 given by (13) can now be
rewritten such that only functions centred atRi are involved:

9(x) =
∑
l

cil hl(E, xi)+ i
√
E
∑
j (6=i)

∑
ll′
jl(E, xi)g

ij

ll′(E)c
j

l′ . (15)

Comparing this expression with equation (12) one can read off immediately

cil = bil (16)∑
l′
(t i)−1

ll′ b
i
l′ =

∑
j (6=i)

∑
l′
g
ij

ll′(E)b
j

l′ . (17)

Putting the pairs(l, i) together under one index and considering the scattering matrixt as a
matrix diagonal in the site indexi, the second equation can be written as a matrix equation:

(t−1− g)b = 0 (18)

showing that the eigenvalues are given by the zeros of the determinant of the matrixt−1−g,
often called the KKR matrix.

One way of calculating physical quantities such as charge density would be to find
the solutions of this equation for all eigenenergies smaller than the Fermi energy and to
construct from the eigenfunctions the quantity in question [6].

A different way to proceed is to calculate the Green’s function of the system. This can
be done without explicitly constructing the eigenfunctions as it can be expressed by the
inverse of the KKR matrix

τ = (t−1− g)−1 (19)

and solutions of the single site problem. The derivation of this expression is completely
analogous to the three-dimensional case [5] and it reads

Gij (x, x ′;E) =
∑
ll′

{
Zl(xi;E)τ ijll′ (E)Zl′(xj ;E)− δij δll′Zl(x<;E)Jl(x>;E)

}
. (20)
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Herex is assumed to be located aroundRi andx ′ aroundRj . Zl(xi;E) is the solution of
the single site problem with potentialVi , which has the asymptotic form

Zl′(E, x) =
∑
l′′
t−1
l′l′′ (E)jl′′(E, x)−

i√
E
hl′(E, x) (21)

for x inside the interstitial region aroundRi . From the definition of the scattering matrix
t , equations (10) and (11), it is clear that this solution is regular.J , the second solution
involved, is characterized by

J (x;E) = j (x;E) (22)

for x inside the interstitial region aroundRi and will be irregular for a nonvanishing
potential.

Given the Green’s functionG the local density of statesρi can be calculated via

ρi(E) = − 1

π
Im
∫

dx Gii(x, x;E) (23)

and the number of particles in the Wigner–Seitz cell of theith potential is

ni =
∫

dE ρi(E). (24)

The energy integral here is a contour integral in the upper complex energy plane starting at
some real energy lower than the lowest eigenenergy and ending at the Fermi energy.

One has to note thatτ is defined by (19) only for energies different from any eigenenergy
because only in this case is the matrix inversion defined. For energies inside the band,τ

is defined by using energies with a small positive imaginary part and letting this imaginary
part go to zero.

2.3. Structure constants and scattering path matrix

One of the nice features of the one-dimensional KKR is the possibility of giving an explicit
expression for the structure constants:

gij (E) = ei
√
E|Rji |

i
√
E

(
1 −i sgnRji

i sgnRji 1

)
for i 6= j (25)

whereRij = Rj − Ri . For given site indicesi and j , the gij are 2× 2 matrices because
of the two possible values ofl. By convention, fori = j the structure constants are set to
zero. This expression follows from (14) and the definitions ofh, j andY by straightforward
calculation.

Equation (25) shows that the structure constants are an oscillating, nondecaying function
of the lattice site distanceRji . (The structure constants in three dimensions decay as 1/|Rji |.)

For the case of a periodic lattice with lattice constanta and site independent scattering
matrices the site dependence of the KKR matrix enters only via the differenceRji = a(j−i)
so it can be diagonalized in the site indices by a lattice Fourier transformation:

gk =
N∑

d=−N
eikdg(j+d)j k = 2π(−N)

2N + 1
,

2π(−N + 1)

2N + 1
, . . . ,

2πN

2N + 1
(26)

where periodic boundary conditions (period 2N + 1) are assumed. By the assumption of
lattice periodicity this expression is independent ofj . The inverse transformation reads

g(j+d)j = 1

2N + 1

∑
k

e−ikdgk. (27)
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The sum in (26) withg given by (25) can be split into geometric sums and can therefore
be easily performed with the result (N →∞)

gk(E) = 1

i
√
E

(
−1+ i sina

√
E

cosk−cosa
√
E

sink
cosk−cosa

√
E

− sink
cosk−cosa

√
E

−1+ i sina
√
E

cosk−cosa
√
E

)
. (28)

As the scattering matrixt is diagonal in the site indices and assumed to be site independent,
its lattice Fourier transform is justt itself independent ofk. We now restrict ourselves
to symmetric potentials, so the scattering matrix becomes diagonal inl and we use its
representation

t−1
l =

−1

i
√
E
(1+ i cotδl) (29)

in terms of the phase shiftsδl . The KKR matrix ink-space now reads

t−1− gk(E) = 1

i
√
E

1

cosk − cosa
√
E

(30)

×
(
−i cotδ0(cosk − cosa

√
E)− i sina

√
E − sink

sink −i cotδ1(cosk − cosa
√
E)− i sina

√
E

)
.

The determinant of this matrix can be evaluated analytically and its zeros determine the
dispersion relation:

cosk = cos(
√
Ea + δ0+ δ1)

cos(δ0− δ1)
=: x. (31)

The abbreviationx for the right-hand side of the dispersion relation has been introduced
for further reference. To find an expression for theτ -matrix the 2×2 matrix (equation (30))
has to be inverted and the result has to be back-Fourier-transformed. As we are interested
not only in the site diagonal elements ofτ , we present here the calculation in a slightly
generalized version compared to Butler [3]. In the Fourier transformation integrals of the
form

Id = 1

2π

∫ π

−π
e−idk cosk − fl

cosk − x dk

Ĩd = i

2π

∫ π

−π
e−idk sink

cosk − x dk (32)

occur where

fl = cos(
√
Ea)− tanδl sin(

√
Ea) (33)

andx stands for the right-hand side of the dispersion relation (31). These integrals can be
transformed into contour integrals along a unit circle by the substitutionz = eik. After this
substitution the integrands have poles atz = 0 and at the solutionsz1, z2 of z2−2zx+1= 0:

z1,2 = x ±
√
x2− 1. (34)

One can easily check thatz1z2 = 1. The integrals (32) are well defined only when the poles
are away from the integration contour, i.e. when|z1| 6= 1 and this is the case whenever
E is not an eigenenergy. When, on the other hand,E is an eigenenergy then (31) has
to have a realk as the solution so|x| 6 1. This now impliesz1 = z∗2 and therefore
|z1|2 = z1z

∗
1 = z1z2 = 1. Of course this just reflects the fact that the KKR matrix
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is invertible only for energies different from eigenenergies. When we now number the
solutionsz1 andz2 such that|z1| < 1< |z2| the above integrals become

Id = δd0+ 2(x − fl)
z1− z2

z
|d|
1 and Ĩd = −sgn(d) z|d|1 (35)

where the signum function sgn is defined to be

sgn(d) =
 +1 d > 0

0 d = 0
−1 d < 0.

Using these integrals we arrive at the following expression for theτ matrix:

τ ij = −√E z|i−j |1

1+ tanδ0 tanδ1

(
tanδ0

(
δij + I (x, 1)

)
tanδ0 tanδ1 sgn(i − j)

− tanδ0 tanδ1 sgn(i − j) tanδ1
(
δij + I (x, 0)

) )
(36)

with

I (x, l) = 2(x − fl)
z1− z2

. (37)

As |z1| < 1 the prefactorz|i−j |1 causes an exponential damping of the matrix elements
with distance from the diagonal. When, however, the limit to eigenenergies is taken,|z1|
approaches 1 and there is no more damping. In this case the matrix elements just oscillate
according toz|i−j |1 = eik|i−j |, wherek = k(E) is the solution of (31) with positive imaginary
part. Evidently, this long range effect ofτ ij is the consequence of the long range effect
of gij in (25). The screening procedure, which we shall introduce in the next section, is a
transformation of the above representation of the problem to another, computationally much
more convenient form, where the matricesτ ij andgij are almost diagonal.

3. Reference system and screening

Since the number of sites determines the size of the KKR matrix, the calculation ofτ by
directly inverting the KKR matrix is only feasible for small systems. On the other hand
Fourier transformation is useful only for periodic systems. We shall now show that by using
an unperturbed Hamiltonian reference system other than the free electron case above, we
can transform the problem at hand to one which is more widely tractable. As will be clear
presently one has to choose a reference system with the same underlying structure as the
system under consideration so that the structure constants of both systems are the same. If
this is done we have from (19)

τ−1− (τ r)−1 = t−1− (t r)−1 = δm (38)

where the matrixδm is introduced as an abbreviation and the superscript r refers to the
reference system. Note that the matrixδm is diagonal in the site indices. Theτ matrix
of the system under consideration can now be expressed by theτ matrix of the reference
systemτ r:

τ = ((τ r)−1+ δm)−1. (39)

This equation can be transformed by simple algebraic manipulations to

τ = (δm)−1− (δm)−1{τ r + (δm)−1}−1(δm)−1. (40)

When the reference system is now chosen such that it has no states in the energy range of
interest, the matrix elements ofτ r decrease exponentially with distance from the diagonal as
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DOS calculated via Fourier transformation
DOS calculated using the reference system
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symmetry projected DOS (l=1)
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reference system
V=5Ry

V=0.5Ry

Figure 1. In the upper panel the density of states for the reference system is shown (thick
broken line) together with its decomposition into two symmetry projected parts (thin broken
lines). The full line shows the factor|eik | (calledz1 in the figure) which governs the decay of
the site off-diagonalτ matrix elements of the reference system. In the lower panel the exact
density of states for the chain of square potential wells (0.5 Ryd deep) is compared with the
result from the calculation with screening.

was shown in the previous section. Hence the matrix{τ r+ (δm)−1} can be approximated by
a block tridiagonal matrix and as such can be inverted numerically using e.g. the decimation
technique described in [7] and in the book by Tureket al [8]. Thus screening has rendered
a whole new class of problems tractable.

In order to obtain, by this method, the inverse of the infinite dimensional KKR matrix
in a finite number of steps, use of the so-called removal invariance is made. Therefore
with this method problems can only be solved where a finite chain of arbitrary single site
potentials lies between two half infinite homogeneous potential chains.

The formulation of the screening procedure described here is very close to that by Zeller
et al [9]. While they expressed the so-called structural Green’s functionG̃ by its counterpart
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of the reference system, we have chosen to deal with the multiple scattering matrixτ . Since
those two quantities are closely related according to

G̃ = t−1τ t−1− t−1 (41)

these two procedures are essentially the same.
As a first illustration we investigate a periodic chain of identical square potential wells.

As was shown in the previous section theτ matrix for this system can be calculated
analytically using lattice Fourier transformation. On the other hand we can also invert the
KKR matrix in real space by the screening procedure just described. As the reference
system we have chosen repulsive square potential wells (5 Ryd high) of the same width
(2 au) and lattice constant (2.2 au) as the potential chain under consideration which was
0.5 Ryd deep. In the screenedτ matrix we neglected third and higher nearest neighbours.
From bothτ matrices we calculated the density of states via (23). The results are shown
in figure 1. In the upper panel the density of states of the reference system together with
|eik|, the factor which governs the decay ofτ , are displayed. As expected|eik| = 1 for
energies inside the bands wherek is the real wavevector and|eik| < 1 outside. In the
lower panel of the figure the density of states obtained by using a reference system and the
exact results obtained by Fourier transformation are compared. For energies smaller than
about 4 Ryd the two curves cannot be distinguished. This is the region where|eik| has
values smaller than∼0.2. For the same reference system the energy range in which both
curves coincide can be slightly improved by taking more distant neighbours into account.
Including up to ninth nearest neighbours leads to coincidence of both curves up to about
4.4 Ryd corresponding to|eik| ≈ 0.5. In contrast to the three-dimensional case the energy
range for which the screening works could be increased to an arbitrary extent by simply
choosing the reference potentials as high as necessary. This is because there are no problems
with angular momentum convergence as we only have to deal with two different symmetries.

4. The interface problem

One class of condensed matter systems where screening is especially helpful are systems
composed of two half infinite crystals separated by a few interlayers [7, 8]. Translational
invariance is then given only in two dimensions, whereas it is broken in the direction
perpendicular to the interlayers. Lattice Fourier transformation in the symmetry plane
reduces the problem to one with one spatial dimension. Therefore the resulting problem for
a given in-plane wavevector (k||) is now very similar to the one-dimensional model discussed
here. Screening, in particular, simplifies the problem of inverting the KKR matrix to the
problem of inverting a banded matrix much in the same way as we have discussed for the
one-dimensional model in the previous section.

4.1. Charge oscillations

In order to model the broken symmetry we have chosen a chain of square potential wells
which are 0.5 Ryd deep on the left-hand side and 1.0 Ryd deep on the right-hand side (see
figure 2). The underlying one-dimensional lattice, however, is chosen to have perfect lattice
symmetry (a = 2.2 au) because it is only in this case that we can use the analytic expression
(36) for theτ matrix of the reference system.

In this system the charge per unit cell is site dependent and oscillates around the value
of the corresponding periodic system (Friedel oscillations). A special feature of the one-
dimensional case is that there is no damping of this oscillation with distance from the
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Figure 2. Here we show a part of the infinitely extended model potential we have used.
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Figure 3. The charge per unit cell as a function of site number is shown (heavy line). The
potential used is shown in figure 2. The crosses show the sinus curves which oscillate with the
wavevectork = 2kF, wherekF can be read from figure 4.
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Figure 4. The dispersion relation for the translationally invariant chain of square potential wells
(0.5 Ryd deep,a = 2.2 au) is shown. The dashed lines mark the values ofk for E = −0.4, 0.0,
1.4 respectively which are used in figure 3.
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Figure 5. The calculated charge per unit cell is shown here for three different chains of potential
wells. The depth of the wells as a function of site number is shown in the lower left inset. The
two other insets show a magnification of the main curves.

boundary. The wavevector describing this oscillation is given by 2× kF wherekF is the
electron wavevector at the Fermi energy for the periodic system. This is well known from
perturbation theory and we show here that this behaviour can be reproduced numerically
in our calculations. As the reference system we again use the chain of repulsive potential



10966 J Schwitalla and B L Györffy

20 15 10 5 0 5 10 15 20

2.0

1.5

1.0

0.5

0.0

0.5

45 35 25 15

0.680

0.685

0.690

10 20 30 40
1.030

1.040

1.050

1.060

1.070

40 30 20 10 0 10 20 30 40
site number

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05
 ρ

  (
el

ec
tr

on
s 

pe
r 

un
it 

ce
ll)

sudden jump of the potential
linear change of the potential
smooth change of the potential

depth of potential wells

Figure 6. As figure 5 except for the depth of the potential wells which here equals 2 Ryd for
the sites on the right.

wells characterized in figure 1. Again the analytic expression (36) can be used for theτ -
matrix of the reference systemτ r and (40) yields theτ -matrix describing the system under
consideration. Finally from (23) and (24) the charge is obtained.

In figure 3 the result of this calculation for three differently chosen Fermi energies
is shown for the sites on the left (see figure 2). The heavy line shows the result of the
full calculation as described above, whereas the crosses are given for site numberi by
α sin(2kFai + φ) with fitted amplitudeα and phaseφ and thek-vector kF is taken from
the dipersion relation (figure 4) of the fully crystal symmetric chain with 0.5 Ryd deep
potentials. Obviously the oscillations have exactly the expected frequency. Be aware that
the curves are only defined for integer site numbers (the line between the points serves only
as a guide for the eye) and therefore the charge oscillates fastest forka = 0.5π .

4.2. Influence of the sharpness of the boundary on the amplitude of the charge oscillations

Finally, to illustrate the power of the above screened KKR method to deal with interesting
surface problems we want to make use of the possibility of choosing single site potentials
arbitrarily in a finite region between two half infinite chains. A natural question to ask
in the present context is how the amplitude of the charge oscillations changes when the
boundary between the two kinds of potential is smeared out. In figure 5 we show the
results for a potential which is the same as that shown in figure 2 apart from a few layers
around site 0, where the potential depth is either a linear function of the site number or a
Fermi-distribution-like function. The inset on the bottom left in figure 5 shows the depth of
the potential wells as a function of the site index. The dashed line in this inset marks the
Fermi energy which is chosen to be 0.5 Ryd. The insets on the top left and on the right show
a magnification of the charge per unit cell. All the full lines correspond to sudden jumps
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of the potential depth; all the dotted lines correspond to a linear change of the potential;
and all the dashed lines correspond to the Fermi-distribution-like behaviour of the potential
depth. The curves show a clear drop of the oscillation amplitudes when going from the
sharp to the smooth interface as one would naturally expect.

Surprisingly, this is not generally the case as demonstrated by figure 6. The only
difference to the calculation just described is the potential depth on the right-hand side
which is chosen here to be 2 Ryd. The difference between the potential on the left and the
potential on the right is now much greater. Here the full line which shows the result for
the sharp boundary is the one with the smallest oscillation amplitude.
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